If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying p2 + 14p = 34 Reorder the terms: 14p + p2 = 34 Solving 14p + p2 = 34 Solving for variable 'p'. Reorder the terms: -34 + 14p + p2 = 34 + -34 Combine like terms: 34 + -34 = 0 -34 + 14p + p2 = 0 Begin completing the square. Move the constant term to the right: Add '34' to each side of the equation. -34 + 14p + 34 + p2 = 0 + 34 Reorder the terms: -34 + 34 + 14p + p2 = 0 + 34 Combine like terms: -34 + 34 = 0 0 + 14p + p2 = 0 + 34 14p + p2 = 0 + 34 Combine like terms: 0 + 34 = 34 14p + p2 = 34 The p term is 14p. Take half its coefficient (7). Square it (49) and add it to both sides. Add '49' to each side of the equation. 14p + 49 + p2 = 34 + 49 Reorder the terms: 49 + 14p + p2 = 34 + 49 Combine like terms: 34 + 49 = 83 49 + 14p + p2 = 83 Factor a perfect square on the left side: (p + 7)(p + 7) = 83 Calculate the square root of the right side: 9.110433579 Break this problem into two subproblems by setting (p + 7) equal to 9.110433579 and -9.110433579.Subproblem 1
p + 7 = 9.110433579 Simplifying p + 7 = 9.110433579 Reorder the terms: 7 + p = 9.110433579 Solving 7 + p = 9.110433579 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-7' to each side of the equation. 7 + -7 + p = 9.110433579 + -7 Combine like terms: 7 + -7 = 0 0 + p = 9.110433579 + -7 p = 9.110433579 + -7 Combine like terms: 9.110433579 + -7 = 2.110433579 p = 2.110433579 Simplifying p = 2.110433579Subproblem 2
p + 7 = -9.110433579 Simplifying p + 7 = -9.110433579 Reorder the terms: 7 + p = -9.110433579 Solving 7 + p = -9.110433579 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-7' to each side of the equation. 7 + -7 + p = -9.110433579 + -7 Combine like terms: 7 + -7 = 0 0 + p = -9.110433579 + -7 p = -9.110433579 + -7 Combine like terms: -9.110433579 + -7 = -16.110433579 p = -16.110433579 Simplifying p = -16.110433579Solution
The solution to the problem is based on the solutions from the subproblems. p = {2.110433579, -16.110433579}
| 10a-a-a-a= | | x^2+20x=-96 | | -2z^3-10z^2=0 | | 2x(3-4)+5=4x-3 | | 5.5(2-m)+3.2(3m-5)=7.3 | | x-6y-26x+9y=-34 | | P+2/4+P/2=P-1/3 | | 8z^2-28z=0 | | 3z^2+7z-40=0 | | .05a+0.01(90)=.02(a+90) | | ax+b=c-d | | x-6y=26 | | x^2-20x=39 | | -3+11-16=X | | (x*x)+x=9 | | -k+3-8k+10=k-2 | | 4x^2-19x+15=-3x+8 | | 4(x-1)+2(2x-3)=-4 | | 58=167-u | | 0=20x^4-45x^2-500 | | h(g+j)=k | | 17=z-(-19) | | 186=14-u | | (x+3)+2=(4x-5) | | 4(2y+3)-2z=54 | | 2y+15=15 | | -u+264=188 | | 6-3x=19-2x | | 4y-3=63 | | (5x+3)-(3x+2)= | | x^2+3x-11=9x+5 | | 6y^2+7y-15=10 |